
 Chapter 8: Library loan system 153

8 Library loan system

In previous programs in this book, we have taken a traditional procedural approach in transferring

data directly between web pages and the ASP database. A better approach for large projects is to

handle data within the program as objects which represent real word entities.

In this example program, we will create a simple system for recording book loans from a library. This

will require two types of real world object, books and library users. The objects may be created

either by loading data from a database table by inputting data directly from the web page or, and

objects can in turn be displayed on screen or saved back to the database.

User interface Program Database

Begin by opening Visual Studio and clicking New Project. Select Visual C# Web as the project type,

then ASP.NET Empty Web Application. Enter the name Library for the project, and select a location

where it will be stored.

Book A

Library

user A

Books

 Book A
 Book B

Book C

Library Users

Library user A
Library user B
Library user C

154 Web Applications with C#.ASP

Go to the Solution Explorer window and right click the Library program icon. Select Add / New Item,

then choose Web Form. Give the name ‘bookCatalog’.

Open the bookCatalog.aspx code page and insert the word ‘Library’ within the <title> tags. Add the

ID ‘content’ to the <div> tag, and insert a heading ‘Library Catalogue’ inside <h3> tags.

<head runat="server">

 <title>Library</title>

</head>

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h3>Book Catalogue</h3>

 </div>

 </form>

</body>

</html>

We will next add some formatting to the page by means of a style sheet. Go to the Solution

Explorer window and right click the Library program icon. Select Add / New Item, then choose Style

Sheet. Accept the name StyleSheet1.

 Chapter 8: Library loan system 155

Open the style sheet and add formatting code for the body and content sections.

body

{

 font-family: Arial, Helvetica, sans-serif;

 background-color:#a0a0a0;

 font-size:medium;

}

#content

{

 width: 1080px;

 height: 2000px;

 margin: 0 auto;

 padding: 20px;

 background-color: #FFFFFF;

 color: Black;

}

Return to the bookCatalog.aspx code, go to the <head> section and add a link to the style sheet.

<head runat="server">

 <title>Library</title>

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />

</head>

Build and run the web page. The heading should be displayed on a white panel.

Close the web browser, return to Visual Studio and stop debugging.

We will now create a database in which book and library user records can be stored. Use the main

menu View option to open the Server Explorer window. Right click on Data Connections and select

Add Connection. Check that the data source is set to Microsoft SQL Server Database File, browse to

a suitable folder location for the database, and give the database file name ‘Library.mdf’.

156 Web Applications with C#.ASP

Go to the Server Explorer window and click the small arrow to the left of Library.mdf to open the

database. Click right on the Tables icon and select Add New Table. Enter fields as shown below.

The bookStockID field should be set as an auto-number which will be allocated by the computer

when records are added. To do this, select the bookStockID row, go to the properties window

below and open the Identity Specification section by clicking the small arrow icon. Set the

‘Is Identity’ property to ‘Yes’.

Close the table by clicking the cross symbol on the tab, and give the name ‘book’ to the table.

The next step is to create another web page for the entry of book records. Go to the Solution

Explorer window and right click the Library program icon. Select Add / New Item, click on

Web Form and give the name ‘addBook’.

 Chapter 8: Library loan system 157

Before working on the web page to add books to the library, we will make a button link to open this

page from the book catalogue. Select the HTML code for bookCatalog.aspx and add a line of code

to create a button.

<body>
 <form id="form1" runat="server">
 <div id="content">
 <h3>Book Catalogue</h3>

 <asp:Button ID="btnAddBook" runat="server" Text="Add book" />

 </div>
 </form>
</body>

Change to the design view where the button should now appear.

Double click the button to create a C# button_click method. Add a line of code to open the addBook

page.

 protected void btnAddBook_Click(object sender, EventArgs e)
 {

 Response.Redirect("addBook.aspx");

 }

Go now to the addBook.aspx HTML code page. Insert lines of code in the <head> section to:

 Link to the stylesheet

 Set the text to ‘Library’ on the page tab

and in the <body> section to:

 Give an ID name to the division

 Set a title ‘Add Book’ for the page using <h3> heading style

 Insert a button to link back to the book catalogue.

<head id="Head1" runat="server">

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />
 <title>Library</title>

</head>
<body>
 <form id="form1" runat="server">

 <div id="content">
 <h3>Add Book</h3>
 <asp:Button ID="btnDisplay" runat="server" Text="Return to Book Catalogue"/>

 </div>
 </form>

158 Web Applications with C#.ASP

Change to the design view and double click the button.

Add a line of C# code to reload the book catalogue page.

 protected void btnDisplay_Click(object sender, EventArgs e)
 {

 Response.Redirect("bookCatalog.aspx");

 }

Build and run the web site. Check that you can change between the Book Catalogue and Add Book
pages by means of the buttons. Close the web browser, return to Visual Studio and stop debugging.

Select the addBook.aspx page and change to the Design view. Click to the right of the button and
press the Enter key to move the cursor downwards to a new line. Go to the Toolbox and scroll down
to the HTML section. Select the Table component, then drag and drop this onto the form below the
button.

Return to the HTML code by clicking the Source button below the design window. Check that two

 line break tags are present below the button. Delete the ‘width: 100%’ formatting command
from the <table> tag and replace this with a cellpadding = ”10” command.

 <asp:Button ID="btnDisplay" runat="server" Text="Return to Book Catalogue"
 onclick="btnDisplay_Click" />

 <table cellpadding="10">

 <tr>
 <td>
 </td>

 Chapter 8: Library loan system 159

Return to the Design view. Type the captions ‘Book title’ and ‘Author’ into the first cells on the top
two rows of the table. Go to the Standard section of the Toolbox and drag and drop Textboxes into
cells to the right of the captions.

Add a button component to the middle column on the bottom row of the table.

Click the Source button to return to the HTML code view. We will make a few changes to the
<table> block of code. Set the ID’s and widths of the text boxes, and set the ID and Text value for
the button. Note that the <td> sections for the third column on each row of the table are not
needed and can be deleted.

 <table cellpadding="10">

 <tr>

 <td>

 Book title</td>

 <td>

 <asp:TextBox ID="txtTitle" runat="server" Width="300px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 Author</td>

 <td>

 <asp:TextBox ID="txtAuthor" runat="server" Width="200px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td></td>

 <td>

 <asp:Button ID="btnAdd" runat="server" Text="Add book to Catalogue" />

 </td>

 </tr>

 </table>

160 Web Applications with C#.ASP

We can now plan how to handle the book data input from the web page. In this and future
programs we will use classes of objects to store and process data in the RAM memory.

Go to the Solution Explorer window, right click the Library program icon, then select Add / New
Item. Choose ‘Class’, and give the name ‘book’.

The first step in producing an object class is to create a set of simple methods which will allow data
values to be transferred into and out of the objects. These methods are called ‘set’ and ‘get’
respectively. Add lines to the class file to do this.

namespace Library

{

 public class book

 {

 public int stockID { get; set; }

 public string title { get; set; }

 public string author { get; set; }

 public string status { get; set; }

 }

}

Return to the Design view for the addBook.aspx page. Double click the ‘Add book to Catalogue’
button to create a button_click method.

Add code to the button_click method to call an addBook method which we will create in the book
class file. We will also allow the addBook method to return a message to indicate whether or not
the record has been saved successfully. Once the book details have been saved, we will clear the
txtTitle and txtAuthor text boxes, ready for entry of the next book record.

 Chapter 8: Library loan system 161

 protected void btnAdd_Click(object sender, EventArgs e)

 {

 lblMessage.Text = book.addBook(txtTitle.Text, txtAuthor.Text);

 txtTitle.Text = "";

 txtAuthor.Text = "";

 }

Go now to the book.cs class file. Begin by adding ‘using Data SqlClient’ and ‘using Data’ directives at
the top of the code page.

using System.Linq;

using System.Web;

using System.Data.SqlClient;

using System.Data;

namespace Library

{

 public class book

 {

The addBook method can now be inserted after the block of get and set methods. The location of
the database also needs to be shown.

public string status { get; set; }

public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

public static string addBook(string title, string author)

{

 string message;

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" +databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooks = new SqlCommand();

 cmBooks.Connection = cnTB;

 cmBooks.CommandType = CommandType.Text;

 cmBooks.CommandText = "INSERT INTO book(bookTitle,author,status) VALUES ('"

 + title + "','" + author + "','available')";

 cmBooks.ExecuteNonQuery();

 cnTB.Close();

 message = "Record saved";

 }

 catch

 {

 message = "File error";

 }

 return message;

}

162 Web Applications with C#.ASP

Return to the Design view for the addBook.aspx page. Add a label component below the table. Go
to the Properties window and set the Name property to ‘lblMessage’. Clear the Text property of the
label, so it is left blank.

Build and run the web site. Select the Add Book page and enter a book title and author. Click the
‘Add book to Catalogue’ button. If all is well, the message ‘Record saved’ should appear.

Continue to add a series of book titles and authors. Close the web browser, return to Visual Studio
and stop debugging. Open the Server Explorer window and check that the books are listed correctly
in the book table of the database. Each book should have been automatically allocated a
bookStockID, and its status should be shown as ‘available’.

We will now arrange for the list of books to be displayed. Open the bookCatalogue.aspx page. Add
lines of code to insert a label below the button.

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h3>Book Catalogue</h3>

 <asp:Button ID="btnAddBook" runat="server" Text="Add book"

 onclick="btnAddBook_Click" />

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </div>

 </form>

</body>

 Chapter 8: Library loan system 163

Open the C# code page bookCatalogue.aspx.cs. (This can be done by right clicking on the HTML

page. A pop-up menu will appear. Select the ‘View Code’ option.)

Add lines to the Page_load method which will call a loadBooks method which we will add to the

book class file. The program will use a property bookCount to keep a count of the number of book

objects created. To make the website operate more efficiently, the IF condition ensures that the

database is only accessed to load the book data once when the site is first opened.

 public partial class bookCatalog : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (book.bookCount == 0)

 {

 book.loadBooks();

 }

 }

Go now to the book.cs class file. Add the bookCount property. We will also set up a bookObject
array, ready to link to book objects. Please note, however, that no memory space will actually be
allocated to these objects until they are created by loading records from the database while the
program is running.

 public class book

 {

 public static int bookCount = 0;

 public static book[] bookObject = new book[100];

 public int stockID { get; set; }

 public string title { get; set; }

Create a loadBooks method below the block of get and set methods.

 public string author { get; set; }

 public string status { get; set; }

 public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

 public static void loadBooks()

 {

 }

 public static string addBook(string title, string author)

 {

 string message;

164 Web Applications with C#.ASP

Code can now be added to the loadBooks method. This carries out a series of tasks:

 All the book records are loaded from the database using the SQL command ‘SELECT * FROM
book’

 We find the number of book records loaded, and use this value to set the countRecords
variable.

 A loop then collects the title and author data for each book and uses this to create a book
object.

 public static void loadBooks()

 {

 DataSet dsBooks = new DataSet();

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooks = new SqlCommand();

 cmBooks.Connection = cnTB;

 cmBooks.CommandType = CommandType.Text;

 cmBooks.CommandText = "SELECT * FROM book";

 SqlDataAdapter daBooks = new SqlDataAdapter(cmBooks);

 daBooks.Fill(dsBooks);

 cnTB.Close();

 int countRecords = dsBooks.Tables[0].Rows.Count;

 book.bookCount = 0;

 for (int i = 0; i < countRecords; i++)

 {

 DataRow drBooks = dsBooks.Tables[0].Rows[i];

 int bookStockID = (int)drBooks[0];

 string bookTitle = Convert.ToString(drBooks[1]);

 string author = Convert.ToString(drBooks[2]);

 string status = Convert.ToString(drBooks[3]);

 book.bookObject[book.bookCount] = new book();

 book.bookObject[book.bookCount].stockID = bookStockID;

 book.bookObject[book.bookCount].title = bookTitle;

 book.bookObject[book.bookCount].author = author;

 book.bookObject[book.bookCount].status = status;

 book.bookCount++;

 }

 }

 catch

 {

 }

 }

 Chapter 8: Library loan system 165

Return to the C# page bookCatalog.aspx.cs and add HTML code to build a table to display the list of

books. The code will be inserted into the page when the website runs by using the label component.

We first create a set of column headings for the table, then use a loop to add details of each book

on a separate row.

 protected void Page_Load(object sender, EventArgs e)

 {

 if (book.bookCount == 0)

 {

 book.loadBooks();

 }

 Label1.Text = "";

 string s = "";

 string status;

 s += "<table cellpadding=8 border=1>";

 s += "<tr>";

 s += "<th>";

 s += "StockID";

 s += "</th>";

 s += "<th>";

 s += "Book title";

 s += "</th>";

 s += "<th>";

 s += "Author";

 s += "</th>";

 s += "<th>";

 s += "Status";

 s += "</th>";

 s += "</tr>";

 for (int i = 0; i < book.bookCount; i++)

 {

 s += "<tr>";

 s += "<td>";

 s += book.bookObject[i].stockID;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].title;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].author;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].status;

 s += "</td>";

 s += "</tr>";

 }

 s += "</table>";

 Label1.Text = s;

 }

166 Web Applications with C#.ASP

Build and run the web page. The list of books should now be displayed.

Close the browser and stop debugging. The next stage is to create a web page where library users can
be registered. Go to the Solution Explorer and right click on the Library program icon. Select Add /
New Item, then choose ‘Web Form’. Give the name ‘addUser’.

Begin by adding lines to the <head> section to link to the style sheet, and to display a title ‘Library’ on
the page tab.

<head id="Head1" runat="server">

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />

 <title>Library</title>

</head>

 Chapter 8: Library loan system 167

Move now to the <body> section. Add code to display a page heading ‘Add Library User’, and a

button to return to the book catalogue page. We will also give an ID ‘content’ to the division.

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h3>Add Library User</h3>

 <asp:Button ID="btnCatalog" runat="server" Text="Return to Book Catalogue" />

 </div>

 </form>

</body>

Change to the Design view and check that the button has been created correctly.

Double click to create a button_click method. Add code to link to the bookCatalog.aspx page.

 protected void btnCatalog_Click(object sender, EventArgs e)
 {

 Response.Redirect("bookCatalog.aspx");

 }

Go now to the bookCatalog.aspx HTML code page. Add a button which will link back to the Add
Library User page.

 <div id="content">

 <h3>Book Catalogue</h3>

 <asp:Button ID="btnAddBook" runat="server" Text="Add book"

 onclick="btnAddBook_Click" />

 <asp:Button ID="btnAddUser" runat="server" Text="Add Library User" />

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </div>

Change to the Design view and check that the button has been created.

168 Web Applications with C#.ASP

Double click the button to create a method, then add code to link to the addUser.aspx page.

 protected void btnAddUser_Click(object sender, EventArgs e)
 {

 Response.Redirect("addUser.aspx");

 }

Build and run the website. Check that it is possible to navigate backwards and forwards between the
Book Catalogue and Add Library User pages by means of the buttons. Close the web browser, return
to Visual Studio and stop debugging.

A table needs to be added to the database to record library users. Go to the Server Explorer window,
open the database by clicking the small arrow the left of Library.mdf icon. Right click Tables and
select Add New Table.

Add fields to the table. We will set the userID to be an autonumber. To do this, scroll down to the
Identity Specification property, open this option by clicking the small arrow, then set ‘IsIdentity’ to
‘Yes’. Close the table with the small cross on the tab, and give the name ‘libraryUser’.

As for books, we will create a class of objects to hold details of each library user.

Go to the Solution Explorer window. Right click the Library program icon and select Add / New Item.
Choose ‘Class’ and give the name ‘libraryUser’.

 Chapter 8: Library loan system 169

As with the book class, we will begin by adding some code to the empty libraryUser class file which
will be needed by the program:

 Insert ‘using Data SqlClient’ and ‘using Data’ directives.

 Set up a userCount property to keep a count of the number of library users, and set up a
userObject array to link to the library user objects when they are created.

 Produce set and get methods to allow data to be transferred into and out of the library user
objects.

 Give the location of the database.

using System.Linq;

using System.Web;

using System.Data.SqlClient;

using System.Data;

namespace Library

{

 public class libraryUser

 {

 public static int userCount = 0;

 public static libraryUser[] userObject = new libraryUser[100];

 public int userID { get; set; }

 public string surname { get; set; }

 public string forename { get; set; }

 public static string databaseLocation="C:\\WEB APPLICATIONS\\Library.mdf;";

 }

}

Return to the addUser.aspx page and select the Design view.

Click to the right of the ‘Return to Book Catalogue’ button and press the Enter key twice to move the
cursor downwards. Open the Toolbox and scroll down to the HTML section. Select the Table
component, drag and drop onto the form.

Click to the right of the table and press the Enter key twice more to move the cursor downwards.
Scroll the Toolbox up to the Standard section. Select the Button component, drag and drop onto the
form below the table.

170 Web Applications with C#.ASP

Click the Source button to change to the HTML page. Edit the code which has just been inserted by
the Design view. Drag the line of Button code into the table, as shown below. Some <td></td> table
data tags and
 line break tags are no longer required and can be deleted.

 <div id="content">

 <h3>Add Library User</h3>

 <asp:Button ID="btnCatalog" runat="server" Text="Return to Book Catalogue"

 onclick="btnCatalog_Click" />

 <table cellpadding="10">

 <tr>

 <td>Surname</td>

 <td>

 <asp:TextBox ID="txtSurname" runat="server"

 Width="200px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Forename</td>

 <td>

 <asp:TextBox ID="txtForename" runat="server"

 Width="200px"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td></td>

 <td>

 <asp:Button ID="btnAddUser" runat="server" Text="Add Library User"/>

 </td>

 </tr>

 </table>

 </div>

Return to the Design view to check that the page now contains captions, text boxes and the button in
the correct cells of the table.

Also build and run the web site to check that the Add Library User page appears correctly. Close the
web browser, return to Visual Studio and stop debugging.

 Chapter 8: Library loan system 171

In the Design screen for addUser.aspx, double click the button to create a C# method. Add code
which will call a method ‘addUser’ which we will add to the libraryUser class to save the record into
the database table. Once the record has been saved, the text boxes can be cleared, ready for the next
data entry.

 protected void btnAddUser_Click(object sender, EventArgs e)

 {

 libraryUser.addUser(txtSurname.Text, txtForename.Text);

 txtSurname.Text = "";

 txtForename.Text = "";

 }

Go now to the libraryUser class file. Insert the addUser() method below the database location line.

 public int userID { get; set; }

 public string surname { get; set; }

 public string forename { get; set; }

 public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

 public static void addUser(string surname, string forename)

 {

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmUsers = new SqlCommand();

 cmUsers.Connection = cnTB;

 cmUsers.CommandType = CommandType.Text;

 cmUsers.CommandText = "INSERT INTO libraryUser(surname,forename)

 VALUES ('" + surname + "','" + forename + "')";

 cmUsers.ExecuteNonQuery();

 cnTB.Close();

 }

 catch

 {

 }

 }

Build and run the web site. Go to the Add Library User page, then enter a series of surnames and
forenames, clicking the ‘Add Library User’ button to save each record into the database.

Close the web browser, return to Visual Studio and stop debugging.

172 Web Applications with C#.ASP

Go to the Database Explorer window. Right click the libraryUser table icon and select ‘Show Table
Data’. Check that the names you entered have been inserted into the table correctly.

The final stage of the project is to arrange for library users to borrow and then return books. To do
this we will create another web page.

Go to the Solution Explorer window and right click the Library project icon. Select Add / New Item.
Choose Web Form and give the name ‘selectBook’.

Open the selectBook.aspx code page. In the <head> section, add a link to the style sheet and a title
for the page tab. In the <body> section give an ID for the division, and insert a button showing the
text ‘Return to Book Catalogue’.

<head id="Head1" runat="server">

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />

 <title>Library</title>

</head>

<body>

 <form id="form1" runat="server">

 <div id="content">

 <asp:Button ID="btnDisplay" runat="server" Text="Return to Book Catalogue"/>

 </div>

 </form>

 </body>

 Chapter 8: Library loan system 173

Change to the Design screen and check that the button is displayed.

Double click the button to create a button_click method, then add code to link to the Book

Catalogue page.

 protected void btnDisplay_Click(object sender, EventArgs e)

 {

 Response.Redirect("bookCatalog.aspx");

 }

Build and run the web page. Click the ‘Return to Book Catalogue’ button and check that the book list
page is then displayed. Close the web browser to return to Visual Studio, then stop debugging.

We will now add buttons alongside each book record to allow a loan to be entered. Before doing this,
open the StyleSheet file and add formatting which will be needed for the <table> and <a href..> tags.

#content

{

 width: 1080px;

 height: 2000px;

 margin: 0 auto;

 padding: 20px;

 background-color: #FFFFFF;

 color: Black;

}

table

{

 border:1px;

}

a

{

 color: White;

 text-decoration:none;

}

Go to the Solution Explorer window and select the C# code for the Book Catalogue page,
bookCatalog.aspx.cs. Add the string variable ‘userIDwanted’ at the start of the bookCatalog class.

 public partial class bookCatalog : System.Web.UI.Page

 {

 string userIDwanted;

 protected void Page_Load(object sender, EventArgs e)

174 Web Applications with C#.ASP

Code can now be added to the loop in the PageLoad() method. This will carry out several tasks:

 A rectangle is created alongside the book record by setting the background colour of a cell to
pale blue using the colour code #00AAEE. This will act as a button showing the text ‘select’.

 If the rectangle is clicked, the Select Book page will be loaded. The ID numer of the selected
book is transferred to the Select Book page by adding this as a parameter to the web page
URL.
For example, if the stockID is 3, the program will build up the command string:
 < a href = ‘selectBook.aspx ?stockID = 3’>

 for (int i = 0; i < book.bookCount; i++)

 {

 s += "<tr>";

 s += "<td>";

 s += book.bookObject[i].stockID;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].title;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].author;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].status;

 status=book.bookObject[i].status;

 status = status.Trim();

 s += "</td>";

 s += "<td bgcolor=#00AAEE>";

 s += "<a href='selectBook.aspx?stockID=";

 s += book.bookObject[i].stockID;

 s += "'>select";

 s += "</td>";

 s += "</tr>";

 }

 s += "</table>";

 Label1.Text = s;

 }

Build and run the web page. ‘Select’ buttons should appear alongside each book record. Click one of
the buttons:

 Chapter 8: Library loan system 175

The selectBook page should open. Examine the address window at the top of the screen. In
addition to the page URL selectBook.aspx, the stockID of the selected book should be shown.

Close the web browser, return to Visual Studio and stop debugging.

Go to the Design view of the selectBook.aspx page. Click to the right of the ‘Return to Book
Catalogue’ button and press enter twice to move the cursor downwards to miss an empty line.

Open the Toolbox and scroll down to the HTML section. Select the Table component and drag and
drop onto the web page below the button.

Click the Source button to change to the HTML code. Edit the <table> section by adding captions
and text boxes for display of the book details. Remove any <td></td> tags no longer required.

 <table cellpadding="10">

 <tr>

 <td>StockID</td>

 <td>

 <asp:TextBox ID="txtStockID" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Title</td>

 <td>

 <asp:TextBox ID="txtTitle" runat="server" Width="400px">

 </asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Author</td>

 <td>

 <asp:TextBox ID="txtAuthor" runat="server" Width="200px">

 </asp:TextBox>

 </td>

 </tr>

 </table>

176 Web Applications with C#.ASP

Return to the Design view and check that the table has been set up correctly.

Right click on the design page to open a pop-up menu. Select the ‘View Code’ option.

Create a stockID string variable in the selectBook class near the top of the C#page.

Add lines of code to the Page_Load() method. This code carries out several tasks:

 The stockID value is extracted from the URL page address. This is stored as an integer

variable ‘n’.

 Book records are loaded by calling the loadBooks() method in the book class file.

 A loop is used to find and display the required book details in the text boxes.

 public partial class selectBook : System.Web.UI.Page

 {

 String stockID;

 protected void Page_Load(object sender, EventArgs e)

 {

 stockID = Request.QueryString["stockID"];

 book.loadBooks();

 txtStockID.Text = stockID;

 int n = Convert.ToInt16(stockID);

 String status = "";

 for (int i = 0; i < book.bookCount; i++)

 {

 if (book.bookObject[i].stockID == n)

 {

 txtTitle.Text = book.bookObject[i].title;

 txtAuthor.Text = book.bookObject[i].author;

 status = book.bookObject[i].status;

 }

 }

 }

 Chapter 8: Library loan system 177

Build and run the web site. Go to the Book Catalogue page and click to select a book.

Check that the selectBook page opens and the correct book details are displayed.

Close the web browser, return to Visual Studio and stop debugging.

Go to the HTML code page for selectBook.aspx. After the table section, add a Panel component

with captions, a drop down list and button. These will allow the borrower to be selected from the

list of names of library users.

 <td>

 <asp:TextBox ID="txtAuthor" runat="server" Width="200px">

 </asp:TextBox>

 </td>

 </tr>

 </table>

 <asp:Panel ID="Panel1" runat="server">

 Available for loan.

 Select borrower:

 <asp:DropDownList ID="DropDownList1" runat="server" Visible="True">

 </asp:DropDownList>

 <asp:Button ID="btnLoan" runat="server" Text="Record book loan"/>

 </asp:Panel>

 </div>

178 Web Applications with C#.ASP

Before running the web page, the names of library users must be loaded into the drop down list. To

do this, return to the C# page selectBook.aspx.cs. Insert code into the Page_Load() method. This

will:

 Load the library user records by means of a method loadUsers which we will add to the

libraryUser class file.

 Clear any previous entries from the drop down list.

 Use a loop to build up a string consisting of the userID, surname and forename of each

library user, then add this to the drop down list.

 protected void Page_Load(object sender, EventArgs e)

 {

 stockID = Request.QueryString["stockID"];

 if (DropDownList1.Items.Count < 1)

 {

 libraryUser.loadUsers();

 string s;

 DropDownList1.Items.Clear();

 for (int i = 0; i < libraryUser.userCount; i++)

 {

 s = "";

 s += libraryUser.userObject[i].userID + ": ";

 s += libraryUser.userObject[i].surname + ", ";

 s += libraryUser.userObject[i].forename;

 DropDownList1.Items.Add(s);

 }

 }

 book.loadBooks();

 txtStockID.Text = stockID;

 int n = Convert.ToInt16(stockID);

Move now to the libraryUser.cs class file. Add the loadUsers() method after the database location

line.

 public class libraryUser

 {

 public static int userCount = 0;

 public static libraryUser[] userObject = new libraryUser[100];

 public int userID { get; set; }

 public string surname { get; set; }

 public string forename { get; set; }

 public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

 public static void loadUsers()
 {

 }

 Chapter 8: Library loan system 179

Add code to the loadUsers() method. This will carry out several tasks:

 The database is opened and all libraryUser records are loaded into a data set.

 A loop is used to access data from each libraryUser record and create a library user object.

The number of userObjects created is stored as the variable userCount.

 public static void loadUsers()
 {
 DataSet dsUsers = new DataSet();

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 AttachDbFilename=" + databaseLocation + "Integrated Security=True;
 Connect Timeout=30; User Instance=True");
 try
 {
 cnTB.Open();
 SqlCommand cmUsers = new SqlCommand();
 cmUsers.Connection = cnTB;
 cmUsers.CommandType = CommandType.Text;
 cmUsers.CommandText = "SELECT * FROM libraryUser";
 SqlDataAdapter daUsers = new SqlDataAdapter(cmUsers);
 daUsers.Fill(dsUsers);
 cnTB.Close();

 int countRecords = dsUsers.Tables[0].Rows.Count;
 libraryUser.userCount = 0;
 for (int i = 0; i < countRecords; i++)
 {
 DataRow drUsers = dsUsers.Tables[0].Rows[i];
 int userID = (int)drUsers[0];
 string surname = Convert.ToString(drUsers[1]);
 string forename = Convert.ToString(drUsers[2]);

 libraryUser.userObject[libraryUser.userCount] = new libraryUser();
 libraryUser.userObject[libraryUser.userCount].userID = userID;
 libraryUser.userObject[libraryUser.userCount].surname = surname;
 libraryUser.userObject[libraryUser.userCount].forename = forename;
 libraryUser.userCount++;
 }
 }
 catch
 {

 }
 }

Build and run the Book Catalogue page, then select a book. When the selectBook page opens,

check that the library users are displayed correctly in the drop down list.

180 Web Applications with C#.ASP

Close the web browser, return to Visual Studio and stop debugging.

We will now work on the program code needed to record book loans. Go to the Design view of the

selectBook.aspx page. Double click the ‘Record book loan’ button to create a button_click method.

Add code to the method to carry out a series of tasks:

 A string variable ‘s’ is used to store details of the borrower selected from the drop down list.

 The variable ‘s’ is split into three parts: the userID, surname and forename.

 The stockID of the book borrowed is obtained from the txtStockID text box.

 Details of the loan will be saved using a recordLoan() method which we will add to the book

class file.

 Book records are reloaded, so that the new loan is included, then the program returns to the

Book Catalogue page.

 protected void btnLoan_Click(object sender, EventArgs e)

 {

 string s = DropDownList1.SelectedItem.Text;

 string[] words = s.Split(':');

 int userID = Convert.ToInt16(words[0]);

 int stockID = Convert.ToInt16(txtStockID.Text);

 book.recordLoan(stockID, userID);

 book.loadBooks();

 Response.Redirect("bookCatalog.aspx");

 }

Open the book.cs class file and add the recordLoan() method after the database location line.

Notice the parameters which pass the stockID and userID values to the method.

 public string author { get; set; }

 public string status { get; set; }

 public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

 public static void recordLoan(int stockID, int userID)

 {

 }

 Chapter 8: Library loan system 181

Code can now be added to the recordLoan() method. This opens the database in the normal way,

then uses an SQL command to change the status of the required book from ‘available’ to the userID

number of the borrower.

 public static void recordLoan(int stockID, int userID)

 {

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooks = new SqlCommand();

 cmBooks.Connection = cnTB;

 cmBooks.CommandType = CommandType.Text;

 cmBooks.CommandText = "UPDATE book SET status ='" + userID +

 "' WHERE bookStockID='" + stockID + "'";

 cmBooks.ExecuteNonQuery();

 cnTB.Close();

 }

 catch

 {

 }

 }

Go next to the Book Catalogue C# code page, bookCatalog.aspx.cs. Locate the loop within the

Page_Load() method and add lines to the code as shown below. These carry out several tasks:

 If a book is on loan, a message is displayed to give the ID number of the borrower. The ID

number is then stored as a variable ‘userIDwanted’.

 When a button is clicked to select a book, the userID of the borrower (if on loan) is

transferred to the selectBook page in addition to the stockID of the book.

182 Web Applications with C#.ASP

remove this line

of code

 for (int i = 0; i < book.bookCount; i++)

 {

 s += "<tr>";

 s += "<td>";

 s += book.bookObject[i].stockID;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].title;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].author;

 s += "</td>";

 s += "<td>";

 s += book.bookObject[i].status;

 status=book.bookObject[i].status;

 status = status.Trim();

 if (status == "available")

 {

 s += status;

 userIDwanted = "";

 }

 else

 {

 s += "on loan to userID " + status;

 userIDwanted = status;

 }

 s += "</td>";

 s += "<td bgcolor=#00AAEE>";

 s += "<a href='selectBook.aspx?stockID=";

 s += book.bookObject[i].stockID;

 s += "&userID=";

 s += userIDwanted;

 s += "'>select";

 s += "</td>";

 s += "</tr>";

 }

 Chapter 8: Library loan system 183

Build and run the web page. Select several books from the Book Catalogue and use the drop down

list of library users on the selectBook page to record loans to different users. Check that the userID

values of the borrowers are displayed correctly.

Close the browser and stop debugging. Our final task is to record the return of books by borrowers.

Go to the HTML code page of selectBook.aspx and add a second panel. If a book is on loan, this will

display details of the borrower and has a button to record the book’s return.

 <asp:Panel ID="Panel1" runat="server">

 Available for loan.

 Select borrower:

 <asp:DropDownList ID="DropDownList1" runat="server" Visible="True">

 </asp:DropDownList>

 <asp:Button ID="btnLoan" runat="server" Text="Record book loan"

 onclick="btnLoan_Click"/>

 </asp:Panel>

 <asp:Panel ID="Panel2" runat="server">

 On loan to

 <asp:TextBox ID="txtBorrower" runat="server" Width="400px"></asp:TextBox>

 <asp:Button ID="btnReturnBook" runat="server" Text="Record book return"/>

 </asp:Panel>

 </div>

We will arrange that only one of the panels is displayed at any time – Panel1 in the case of a book

which is available for borrowing, and Panel2 in the case of a book which is already on loan.

184 Web Applications with C#.ASP

Go to the C# code page selectBook. aspx.cs. Add a string variable ‘userIDwanted’ and a line of code

to obtain the value for this variable, which was attached to the page URL as an extra parameter.

 public partial class selectBook : System.Web.UI.Page

 {

 String stockID;

 String userIDwanted;

 protected void Page_Load(object sender, EventArgs e)

 {

 stockID = Request.QueryString["stockID"];

 userIDwanted = Request.QueryString["userID"];

 if (DropDownList1.Items.Count < 1)

 {

 libraryUser.loadUsers();

Move down the Page_Load() method to locate the loop which finds the title, author and loan status

of the selected book. After this loop, insert lines of code to check whether the book is available and

then display the appropriate panel.

 for (int i = 0; i < book.bookCount; i++)

 {

 if (book.bookObject[i].stockID == n)

 {

 txtTitle.Text = book.bookObject[i].title;

 txtAuthor.Text = book.bookObject[i].author;

 status = book.bookObject[i].status;

 }

 }

 status = status.Trim();

 if (status == "available")

 {

 Panel1.Visible = true;

 Panel2.Visible = false;

 }

 else

 {

 Panel1.Visible = false;

 Panel2.Visible = true;

 }

 Chapter 8: Library loan system 185

Code can then be added to the else block of the conditional structure, which operates in the case of

a book on loan. The lines of code carry out a loop to find the correct user object, then transfer the

userID, surname and forename to the text box.

 if (status == "available")

 {

 Panel1.Visible = true;

 Panel2.Visible = false;

 }

 else

 {

 Panel1.Visible = false;

 Panel2.Visible = true;

 int userID;

 for (int i = 0; i < libraryUser.userCount; i++)

 {

 userID = libraryUser.userObject[i].userID;

 if (userID == Convert.ToInt16(userIDwanted))

 {

 string surname = libraryUser.userObject[i].surname;

 string forename = libraryUser.userObject[i].forename;

 string s = "userID " + userIDwanted + ": " + surname + ", "

 + forename;

 txtBorrower.Text = s;

 }

 }

 }

Build and run the web site. Go to the Book Catalogue page and select a book which is on loan.

Check that the selectBook page opens with only the ‘Record book return’ panel visible, and the

details of the borrower displayed correctly.

186 Web Applications with C#.ASP

Check also that the correct panel is displayed for a book not on loan.

Close the web browser, return to Visual Studio and stop debugging.

It simply remains to set up program code for the ‘Record book return’ button. Go to the Design view

of selectBook.aspx and double click the button to create a button_click method.

Add lines of code to the button_click method which will:

 Call a recordReturn() method which we will add to the book class file.

 Reload the book records, so that the returned book is displayed as ‘available’.

 Go to the Book Catalogue page.

 protected void btnReturnBook_Click(object sender, EventArgs e)

 {

 book.recordReturn(Convert.ToInt16(stockID));

 book.loadBooks();

 Response.Redirect("bookCatalog.aspx");

 }

 Chapter 8: Library loan system 187

Move to the book.cs class file and add a recordReturn() method. This opens the database, then uses

an SQL command to reset the loan status of the selected book record to ‘available’.

 public string author { get; set; }

 public string status { get; set; }

 public static string databaseLocation = "C:\\WEB APPLICATIONS\\Library.mdf;";

 public static void recordReturn(int stockID)

 {

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename=" + databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 try

 {

 cnTB.Open();

 SqlCommand cmBooks = new SqlCommand();

 cmBooks.Connection = cnTB;

 cmBooks.CommandType = CommandType.Text;

 cmBooks.CommandText = "UPDATE book SET status ='available'

 WHERE bookStockID='" + stockID + "'";

 cmBooks.ExecuteNonQuery();

 cnTB.Close();

 }

 catch

 {

 }

 }

Build and run the web site. Systematically test the program by issuing books on loan to different

library users, then checking that the return of the books is recorded correctly.

